Let it bud: an ultrastructural study of Cryptococcus neoformans surface during budding events

BioRxiv : the Preprint Server for Biology
G. R. d. S. AraujoS. Frases


Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals. It is surrounded by three concentric structures that separate the cell from the extracellular space: the plasma membrane, the cell wall and the polysaccharide capsule. Although several studies have revealed the chemical composition of these structures, little is known about their ultrastructural organization and remodeling during C. neoformans budding event. Here, by combining the state-of-the-art in light and electron microscopy techniques we describe the morphological remodeling that occurs synergistically among the capsule, cell wall and plasma membrane during budding in C. neoformans. Our results show that the cell wall deforms to generate a specialized budding region at one of the cell's poles. This region subsequently begins to break into layers that are slightly separated from each other and with thick tips. We also observe a reduction in density of the capsular polysaccharide around these specialized regions. Daughter cells present a distinct spatial organization, with polysaccharide fibers aligned in the direction of budding. In addition, to control the continuous openings between mother and daughter c...Continue Reading

Related Concepts

Related Feeds

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.