High-affinity agonist binding to C5aR results from a cooperative two-site binding mechanism

BioRxiv : the Preprint Server for Biology
A. DumitruDavid Alsteens

Abstract

A current challenge in the field of life sciences is to decipher, in their native environment, the functional activation of cell surface receptors upon binding of complex ligands. Lack of suitable nanoscopic methods has hampered our ability to meet this challenge in an experimental manner. Here, we use for the first time the interplay between atomic force microscopy, steered molecular dynamics and functional assays to elucidate the complex ligand-binding mechanism of C5a with the human G protein-coupled C5a receptor (C5aR). We have identified two independent binding sites acting in concert where the N-terminal C5aR serves as kinetic trap and the transmembrane domain as functional site. Our results corroborate the two-site binding model and clearly identify a cooperative effect between two binding sites within the C5aR. We anticipate that our methodology could be used for development and design of new therapeutic agents to negatively modulate C5aR activity.

Related Concepts

Biochemical Pathway
Size
Meta-Analysis (Publications)
Meta Analysis (Statistical Procedure)
Shade Avoidance
Genes
Meristem
Science of Morphology
Tomatoes
Organ

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.