Lineage tracing on transcriptional landscapes links state to fate during differentiation

BioRxiv : the Preprint Server for Biology
Caleb WeinrebAllon M Klein


A challenge in stem cell biology is to associate molecular differences among progenitor cells with their capacity to generate mature cell types. Though the development of single cell assays allows for the capture of progenitor cell states in great detail, these assays cannot definitively link those molecular states to their long-term fate. Here, we use expressed DNA barcodes to clonally trace single cell transcriptomes dynamically during differentiation and apply this approach to the study of hematopoiesis. Our analysis identifies functional boundaries of cell potential early in the hematopoietic hierarchy and locates them on a continuous transcriptional landscape. Additionally, we find that the monocyte lineage differentiates through two distinct transcriptional and clonal routes, leaving a persistent imprint on mature cells. Finally, we use our approach to reflect on current methods of dynamics inference from single-cell snapshots. We find that for in vitro hematopoiesis, published fate prediction algorithms do not detect lineage priming in early progenitors, and provide evidence that there are hidden properties that influence cell fate but are not detectable with current single-cell sequencing methods.

Related Concepts

Cell Differentiation Process
Stem Cells
Transcription, Genetic
Hematopoietic Neoplasms
Protein Expression

Related Feeds

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.