Mar 25, 2020

Linking flexibility of brain networks to cognitive development in preschool children

BioRxiv : the Preprint Server for Biology
L. S. Chamakura, S. N. Daimi

Abstract

Recent studies of functional connectivity networks (FCNs) suggest that the reconfiguration of brain network across time, both at rest and during task, is linked with cognition in human adults. In this study, we tested this prediction, i.e. cognitive ability is associated with a flexible brain network in preschool children of 3-4 years - a critical age, representing a 'blossoming period' for brain development. We recorded magnetoencephalogram (MEG) data from 88 preschoolers, and assessed their cognitive ability by a battery of cognitive tests. We estimated FCNs obtained from the source reconstructed MEG recordings, and characterized the temporal variability at each node using a novel path-based measure of temporal variability; the latter captures reconfiguration of the node's interactions to the rest of the network across time. Using connectome predictive modeling, we demonstrated that the temporal variability of fronto-temporal nodes in the dynamic FCN can reliably predict out-of-scanner performance of short-term memory and attention distractability in novel participants. Further, we observed that the network-level temporal variability increased with age, while individual nodes exhibited an inverse relationship between temporal...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Symphurus thermophilus
In Vivo
Neisseria meningitidis
Exons
Genome
Genes
CRISPR-Cas Systems
Widening
Streptococcus thermophilus
Streptomyces thermophilus

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

Researcher Network:CZI Neurodegeneration Challenge

The Neurodegeneration Challenge Network aims to provide funding for and to bring together researchers studying neurodegenerative diseases. Find the latest research from the NDCN grantees here.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.