Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons
Abstract
The localization of the vasoactive intestinal polypeptide (VIP) has been studied with immunohistochemistry and radioimmunoanalysis. VIP immunoreactivity is present in gastrointestinal nerves, which constitute a quantitatively important nerve population that may be intrinsic to the gut wall. VIP-immunoreactive neurons are also found within the ventromedial hypothalamus and give off processes that travel latteral to the third ventricle. Results of radioimmunoanalysis strongly indicate that the immunoreactive material represents true VIP. Thus VIP, at present a gastrointestinal hormone candidate, appears to represent a new neuronal peptide occurring in both the central and peripheral nervous system.
References
Citations
Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain
Vasoactive intestinal peptide: levels and functional receptors in rat brain before and after weaning
Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses
Colocalization of VIP with other neuropeptides and neurotransmitters in the autonomic nervous system
Plasticity of postganglionic sympathetic neurons in the rat superior cervical ganglion after axotomy
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Synthetic Genetic Array Analysis
Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
Computational Methods for Protein Structures
Computational methods employing machine learning algorithms are powerful tools that can be used to predict the effect of mutations on protein structure. This is important in neurodegenerative disorders, where some mutations can cause the formation of toxic protein aggregations. This feed follows the latests insights into the relationships between mutation and protein structure leading to better understanding of disease.
Congenital Hyperinsulinism
Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Epigenetic Memory
Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.
Cell Atlas of the Human Eye
Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.
Femoral Neoplasms
Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.