Mar 21, 2020

Long noncoding RNA ILF3-AS1 regulates myocardial infarction via the miR-212-3p/SIRT1 axis and PI3K/Akt signaling pathway

European Review for Medical and Pharmacological Sciences
J-Y ZhangJ Sun


Myocardial infarction (MI) is a serious cardiac disease due to its high incidence and mortality worldwide. Long noncoding RNAs (lncRNAs) have been found to play an essential role in the pathological progress of various cardiovascular diseases. ILF3-AS1 is a newly identified lncRNA, and many studies have demonstrated that ILF3-AS1 affects the development of various malignancies. However, the biological function of ILF3-AS1 and its underlying mechanism in MI are still unknown. In the present study, the function of ILF3-AS1 and the possible mechanisms against hypoxia-induced apoptosis in H9c2 cells were investigated. H9c2 cells were exposed to hypoxia (1% O2) to mimic the in vitro model of MI. The levels of lncRNA ILF3-AS1 and microRNA miR-212-3p were measured by real-time PCR (RT-PCR). Transfection was performed to upregulate the levels of ILF3-AS1 and miR-212-3p. Western blot assays were carried out to measure protein expression. The relationship between ILF3-AS1 and miR-212-3p was verified by Dual-Luciferase reporter assay. We found that ILF3-AS1 was downregulated by hypoxia. Overexpression of ILF3-AS1 resulted in the relief of hypoxia-induced damage to H9c2 cells by rescuing cell viability, migration, and invasion and suppress...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Heart Diseases
Real-Time Polymerase Chain Reaction
Migration, Cell
Protein Overexpression
Myoblasts, Cardiac
Myocardial Infarction
Cell Invasion
Traumatic Injury

Related Feeds

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis