Loss of Dicer1 in mouse embryonic fibroblasts impairs ER stress-induced apoptosis

BioRxiv : the Preprint Server for Biology
Ananya GuptaSANJEEV GUPTA

Abstract

The endoplasmic reticulum (ER) is the site of folding for membrane and secreted proteins. Accumulation of unfolded or misfolded proteins in the ER triggers the unfolded protein response (UPR). The UPR can promote survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. However, when ER stress is acute or prolonged cells undergo apoptosis. In this study we sought to determine the effect of globally compromised microRNA biogenesis on the UPR and ER stress-induced apoptosis. Here we report the role of Dicer-dependent miRNA biogenesis during the UPR and ER stress-induced apoptosis. We show that ER stress-induced caspase activation and apoptosis is attenuated in Dicer deficient fibroblasts. ER stress-mediated induction of GRP78, the key ER resident chaperone, and also HERP, an important component of ER-associated degradation, are significantly increased in Dicer deficient cells. Expression of the BCL-2 family members BIM and MCL1 were significantly higher in Dicer-null fibroblasts. However, ER stress-mediated induction of pro-apoptotic BH3 only protein BIM was compromised in Dicer mutant cells.These observations demonstrate key roles for Dicer in the UPR and i...Continue Reading

Related Concepts

Endoplasmic Reticulum
Fibroblasts
Laboratory mice
Up-Regulation (Physiology)
Apoptosis
Protein Folding
Site
MCL1 protein, human
Anabolism
Molecular Chaperones

Related Feeds

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

BCL-2 Family Proteins

BLC-2 family proteins are a group that share the same homologous BH domain. They play many different roles including pro-survival signals, mitochondria-mediated apoptosis and removal or damaged cells. They are often regulated by phosphorylation, affecting their catalytic activity. Here is the latest research on BCL-2 family proteins.