Jul 2, 2016

Loss of flight in the Galapagos cormorant mirrors human skeletal ciliopathies

BioRxiv : the Preprint Server for Biology
Alejandro BurgaLeonid Kruglyak


Changes in the size and proportion of limbs and other structures have played a key role in the adaptive evolution of species. However, despite the ubiquity of these modifications, we have a very limited idea of how these changes occur on the genetic and molecular levels. To fill this gap, we studied a recent and extreme case of wing and pectoral skeleton size reduction leading to flightlessness in the Galapagos cormorant (Phalacrocorax harrisi). We sequenced and de novo assembled the genomes of four closely related cormorant species and applied a joint predictive and comparative genomics approach to find candidate variants. Here we report that function-altering variants in genes necessary for both the correct transcriptional regulation and function of the primary cilium contributed to the evolution of loss of flight in P. harrisi. Cilia are essential for Hedgehog signaling, and humans affected by skeletal ciliopathies suffer from premature arrest of bone growth, mirroring the skeletal features associated with loss of flight.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Family Phalacrocoracidae (organism)
Transcriptional Regulation
Paralamyctes harrisi
Skeletal System
Limb Structure

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Alstrom Syndrome

Alstrom syndrome is a rare disorder characterized by early obesity, loss of central vision, diabetes mellitus, hearing loss, and short stature. Here is the latest research.