LUNG REGENERATION IN ABSTAINING SMOKERS

Radiation Protection Dosimetry
Radoslav BöhmKarol Holý

Abstract

Smoking modifies morphological and physiological parameters of the lungs. Due to the irritation of airways, the natural self-cleaning ability of the lungs is impaired. The mucus accumulates in the airways and various infections develop, leading to chronic bronchitis. After the cessation of smoking, the lungs of the smoker start to heal and regenerate. Cilia in the lungs start to grow again and cleanse the lungs, thus reducing the risk of infection. The regeneration of the lungs takes a long time and depends on the degree of lung damage due to smoking. The aim of this study was to reconstruct the evolution of this regeneration process in chronic smokers by using the biological effects of radon and its decay products. Thus, radon in this study served as a tracer of changes induced by smoking.

References

Aug 16, 2003·Radiation Protection Dosimetry·Radoslav BöhmKarol Holý
Mar 17, 2006·Scandinavian Journal of Work, Environment & Health·J Paul Leigh
Sep 22, 2009·Radiation Protection Dosimetry·Paul F BaiasOctavian G Duliu

Citations

Aug 14, 2019·Risk Analysis : an Official Publication of the Society for Risk Analysis·Radoslav BöhmKarol Holý

Related Concepts

Bronchitis, Chronic
Cilia
Lung
Mucous Body Substance
Radon
Natural Regeneration
Lung Injury
Airway Structure
Study

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Pediculosis pubis

Pediculosis pubis is a disease caused by a parasitic insect known as Pthirus pubis, which infests human pubic hair, as well as other areas with hair including eye lashes. Here is the latest research.

Rh Isoimmunization

Rh isoimmunization is a potentially preventable condition that occasionally is associated with significant perinatal morbidity or mortality. Discover the latest research on Rh Isoimmunization here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells. It also follows CRISPR-Cas9 approaches to generating genetic mutants as a means of understanding the effect of genetics on phenotype.

Enzyme Evolution

This feed focuses on molecular models of enzyme evolution and new approaches (such as adaptive laboratory evolution) to metabolic engineering of microorganisms. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Pharmacology of Proteinopathies

This feed focuses on the pharmacology of proteinopathies - diseases in which proteins abnormally aggregate (i.e. Alzheimer’s, Parkinson’s, etc.). Discover the latest research in this field with this feed.

Alignment-free Sequence Analysis Tools

Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. Here is the latest research.

Related Papers

Risk Analysis : an Official Publication of the Society for Risk Analysis
Radoslav BöhmKarol Holý
British Medical Journal
N K KOCHETKOVI S GLUKHODED
© 2021 Meta ULC. All rights reserved