Jun 3, 2011

Luteolin inhibits microglial inflammation and improves neuron survival against inflammation

The International Journal of Neuroscience
Li-Hong ZhuDa-xiang Lu

Abstract

Microglia activation is one of the causative factors for neuroinflammation, which results in brain damage during neurodegenerative disease. Accumulating evidence has shown that the flavonoid luteolin (Lut) possesses potent anti-inflammatory properties; however, its effect on microglia inhibition is currently unknown. Moreover, it is not clear whether Lut also has indirect neuroprotective effects by reducing inflammatory mediators and suppressing microglia activation. In this study, we examined the effects of Lut on lipopolysaccharide (LPS)-induced proinflammatory mediator production and signaling pathways in murine BV2 microglia. In addition, we cocultured microglia and neurons to observe the indirect neuroprotective effects of Lut. Lut inhibited the LPS-stimulated expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) as well as the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Moreover, Lut blocked LPS-induced nuclear factor kappa B (NF-κB) activation. Preincubation of microglia with Lut diminished the neurotoxic effects, owing to the direct anti-inflammatory effects of the compound. Taken together, our findings suggest that Lut ...Continue Reading

Mentioned in this Paper

ISYNA1 gene
Biochemical Pathway
Tumor Necrosis Factor-alpha
Coculture Techniques
Inflammation Mediators
Analgesics, Anti-Inflammatory
Interleukin-1
Murine
Anti-Inflammatory Agents
Neurons

Related Feeds

Anti-inflammatory Treatments

A drug or substance that reduces inflammation (redness, swelling, and pain) in the body. Anti-inflammatory agents block certain substances in the body that cause inflammation and swelling. Discover the latest research on anti-inflammatory treatments here