Apr 22, 2020

Hyperexcitability and loss of feedforward inhibition in the Fmr1KO lateral amygdala.

BioRxiv : the Preprint Server for Biology
E. M. GuthmanMolly M Huntsman


Fragile X Syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, autism spectrum disorders (ASDs), and anxiety disorders. The disruption in the function of the FMR1 gene results in a range of alterations in cellular and synaptic function. Previous studies have identified dynamic alterations in inhibitory neurotransmission in early postnatal development in the amygdala of the mouse model of FXS. Yet little is known how these changes alter microcircuit development and plasticity in the lateral amygdala (LA). Using whole-cell patch clamp electrophysiology, we demonstrate that principal neurons (PNs) in the LA exhibit hyperexcitability with a concomitant increase in the synaptic strength of excitatory synapses in the BLA. Further, reduced feed-forward inhibition appears to enhance synaptic plasticity in the FXS amygdala. These results demonstrate that plasticity is enhanced in the amygdala of the juvenile Fmr1 KO mouse and that E/I imbalance may underpin anxiety disorders commonly seen in FXS and ASDs.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Public Health Prevention Model
Nitrates and nitrites
Systemic Disease
Gene Expression
Anaerobic Respiration
Metabolic Syndrome Pathway
Metabolic Pathway
Addition to Lower Extremity, Patten Bottom
Nitrite Measurement

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.