Mapping the Conformational Landscape of a Dynamic Enzyme by XFEL and Multitemperature Crystallography

BioRxiv : the Preprint Server for Biology
Daniel A KeedyJames S Fraser


Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function. Here we compare the conformational ensembles of CypA by fixed-target X-ray free electron laser (XFEL) crystallography and multitemperature synchrotron crystallography. The “diffraction-before-destruction” nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated above, but not below, the glass transition temperature (~200 K) and reveal abrupt changes in protein flexibility that provide all-atom insight into conformational coupling. Together, our XFEL data and multitemperature analyses motivate a new generation of time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.  

Related Concepts

Cyclophilin A
Plain X-ray
Protein Function
Radiation Damage to Artery
PPIA gene
Electron Crystallography
X-Ray Diffraction

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.