Apr 25, 2020

Multi-day rTMS exerts site-specific effects on functional connectivity but does not influence associative memory performance

BioRxiv : the Preprint Server for Biology
Joshua J HendrikseN. Rogasch

Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique with the capacity to modulate brain network connectivity and cognitive function. Recent studies have demonstrated long-lasting improvements in associative memory and resting-state connectivity following multi-day repetitive TMS (rTMS) to individualised parietal-hippocampal networks. We aimed to assess the reproducibility and network- and cognitive-specificity of these effects following multi-day rTMS. Participants received four days of 20 Hz rTMS to a subject-specific region of left lateral parietal cortex exhibiting peak functional connectivity to the left hippocampus. In a separate week, the same stimulation protocol was applied to a subject-specific region of pre-supplementary motor area (pre-SMA) exhibiting peak functional connectivity to the left putamen. We assessed changes to associative memory before and after each week of stimulation (N = 39), and changes to resting-state functional connectivity before and after stimulation in week one (N = 36). We found no evidence of long-lasting enhancement of associative memory or increased parieto-hippocampal connectivity following multi-day rTMS to the parietal cortex, nor increased pre-SMA-puta...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Central
Zone
Genes
DNA, Mitochondrial
Hungarians
Alzheimer's Disease
Grassland
West (Direction)
Avar
Mitochondria

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Alzheimer's Disease: Microglia (Preprints)

Microglial proliferation and activation, as well as its concentration around amyloid plaques, is a prominent feature of Alzheimer’s disease. Here is the latest research on microglia and Alzheimer’s disease.