Feb 6, 2010

Mathematical modelling of the Aux/IAA negative feedback loop

Bulletin of Mathematical Biology
A M MiddletonMarkus Owen


The hormone auxin is implicated in regulating a diverse range of developmental processes in plants. Auxin acts in part by inducing the Aux/IAA genes. The associated pathway comprises multiple negative feedback loops (whereby Aux/IAA proteins can repress Aux/IAA genes) that are disrupted by auxin mediating the turnover of Aux/IAA protein. In this paper, we develop a mathematical model of a single Aux/IAA negative feedback loop in a population of identical cells. The model has a single steady-state. We explore parameter space to uncover a number of dynamical regimes. In particular, we identify the ratio between the Aux/IAA protein and mRNA turnover rates as a key parameter in the model. When this ratio is sufficiently small, the system can evolve to a stable limit cycle, corresponding to an oscillation in Aux/IAA expression levels. Otherwise, the steady-state is either a stable-node or a stable-spiral. These observations may shed light on recent experimental results.

  • References22
  • Citations28
  • References22
  • Citations28


Mentioned in this Paper

Biochemical Pathway
Gene Expression Regulation, Plant
Arabidopsis thaliana Proteins
Biochemical Turnover
Feedback, Biochemical
Indoleacetic acid, monosodium salt
Arabidopsis thaliana <plant>
Plant Growth Regulators

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.