Matrix linear models for high-throughput chemical genetic screens

BioRxiv : the Preprint Server for Biology
Jane W LiangSaunak Sen

Abstract

We develop a flexible and computationally efficient approach for analyzing high throughput chemical genetic screens. In such screens, a library of genetic mutants is phenotyped in a large number of stresses. The goal is to detect interactions between genes and stresses. Typically, this is achieved by grouping the mutants and stresses into categories, and performing modified t-tests for each combination. This approach does not have a natural extension if mutants or stresses have quantitative or non-overlapping annotations (eg. if conditions have doses, or a mutant falls into more than one category simultaneously). We develop a matrix linear model framework that allows us to model relationships between mutants and conditions in a simple, yet flexible multivariate framework. It encodes both categorical and continuous relationships to enhance detection of associations. To handle large datasets, we develop a fast estimation approach that takes advantage of the structure of matrix linear models. We evaluate our method's performance in simulations and in an E. coli chemical genetic screen, comparing it with an existing univariate approach based on modified t-tests. We show that matrix linear models perform slightly better than the uni...Continue Reading

Related Concepts

Escherichia coli
General Adaptation Syndrome
Genes
Objective (Goal)
Evaluation
Dietary Supplements
Mutant
Structure
Gene Mutant
Simulation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.