Measurement of the mapping between intracranial EEG and fMRI recordings in the human brain

BioRxiv : the Preprint Server for Biology
David W CarmichaelLouis Lemieux


There are considerable gaps in our understanding of the relationship between human brain activity measured at different temporal and spatial scales by intracranial electroencephalography and fMRI. By comparing individual features and summary descriptions of intracranial EEG activity we determined which best predict fMRI changes in the sensorimotor cortex in two brain states: at rest and during motor performance. We also then examine the specificity of this relationship to spatial colocalisation of the two signals. We acquired electrocorticography and fMRI simultaneously (ECoG-fMRI) in the sensorimotor cortex of 3 patients with epilepsy. During motor activity, high gamma power was the only frequency band where the electrophysiological response was co-localised with fMRI measures across all subjects. The best model of fMRI changes was its principal components, a parsimonious description of the entire ECoG spectrogram. This model performed much better than a model based on the classical frequency bands both during task and rest periods or models derived on a summary of cross spectral changes (e.g. root mean squared EEG frequency). This suggests that the region specific fMRI signal is reflected in spatially and spectrally distribut...Continue Reading

Related Concepts

Molecular Motor Activity
Motor Performance
Spatial Distribution
Sensorimotor Cortex

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Brain Lower Grade Glioma

Low grade gliomas in the brain form from oligodendrocytes and astrocytes and are the slowest-growing glioma in adults. Discover the latest research on these brain tumors here.