Mechanical restitution during alternans in guinea pig papillary muscles

Cardiovascular Research
C I SpencerW A Seed


The aim was to investigate alternate acceleration and retardation of mechanical restitution as a possible mechanism for mechanical alternans in isolated myocardium. Mechanical alternans was induced in papillary muscles from the right ventricles of 11 guinea pigs (200-300 g) by rapid pacing under hypothermic conditions (T = 27 degrees C). Mechanical restitution curves were constructed by measuring the force responses to stimuli applied following variable test intervals during steady state pacing. Curves were obtained under control conditions (steady state stimulation interval 3 s), and for the beats following the large and small contractions during mechanical alternans. Monoexponentials were fitted to the restitution curves. The mean rate constant for restitution following the large beat in alternans was found to be slightly but significantly smaller than that following the small. Both rate constants obtained during alternans were significantly larger than the control rate constant (restitution was faster in alternans). In addition, as the alternation widened, the restitution curve of the beat following the small contraction developed a higher plateau than that following the large. The results confirm that the small beat in alte...Continue Reading

Related Concepts

Myocardial Contraction
Calcium [EPC]
Right Ventricular Structure
Isolated Noncompaction of the Ventricular Myocardium
Biomechanical Compliance
Contraction (Finding)

Related Feeds


Arrhythmias are abnormalities in heart rhythms, which can be either too fast or too slow. They can result from abnormalities of the initiation of an impulse or impulse conduction or a combination of both. Here is the latest research on arrhythmias.

Atrial Fibrillation

Atrial fibrillation is a common arrhythmia that is associated with substantial morbidity and mortality, particularly due to stroke and thromboembolism. Here is the latest research.