Apr 23, 2020

Structure of the bacterial cellulose ribbon and its assembly-guiding cytoskeleton by electron cryotomography

BioRxiv : the Preprint Server for Biology
W. J. NICOLASGrant J Jensen


Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength and stiffness prevents dehydration and mechanical disruption of the biofilm. Bacteria in the Gluconacetobacter genus secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused ion beam milling of native bacterial biofilms to image cellulose-synthesizing G. hansenii and G. xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several microns in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, that we name the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We find that this structure is not present in other cellulose-synthes...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

In Vivo
Pancreatic Carcinoma
Liver Carcinoma
Malignant Neoplasm of Pancreas
House mice
Blastocyst Implantation, Natural

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.