PMID: 43249Dec 17, 1979

Mechanism-controlled stereospecificity. Acylation of subtilisin with enantiomeric alkyl and nitrophenyl ester substrates

European Journal of Biochemistry
L Polgár, J Fejes


The activation parameters of acylation of subtilisin with alkyl and p-nitrophenyl esters of N-acylamino acid enantiomers were determined. It was found that (1) the activation entropy is much higher with the nitrophenyl esters than with the corresponding methyl esters, (2) the difference in rate constants between enantiomers is 10(4)--10(5) with methyl esters whereas it is only of the order of 10 with nitrophenyl esters. The results indicate that the catalytic mechanism is simpler for nitrophenyl esters than for alkyl esters. The simple mechanism requires only general base catalysis, and thus permits more freedom of motion in the transition state, whereas the complex mechanism involves both general base and general acid catalysis. Furthermore, the strikingly low enantiomeric specificity with nitrophenyl esters indicates that not only binding but also the catalytic mechanism is an important factor in determining the stereospecificity of an enzyme. The activation parameters for enantiomeric nitrophenyl ester reactions suggest that structurally related substrates can be transformed by the enzyme in different conformations which may be energetically similar or not. The energetically different conformations may account for the activa...Continue Reading


Jan 1, 1983·Molecular and Cellular Biochemistry·M Philipp, M L BENDER


Aug 1, 1978·European Journal of Biochemistry·L Polgár, P Halász
Oct 10, 1973·Biochimica Et Biophysica Acta·L Polgár
Nov 15, 1973·European Journal of Biochemistry·L Polgár, P Halász
Oct 15, 1971·Biochemical and Biophysical Research Communications·R A AldenC S Wright
Dec 1, 1969·Proceedings of the National Academy of Sciences of the United States of America·L Polgár, M L BENDER
Sep 1, 1967·Biochemistry·Thomas H Fife, J B Milstien
Jan 1, 1965·Annual Review of Biochemistry·M L BENDER, J KEZDY

Related Concepts

Substrate Specificity
Subtilisin 72
Metaplastic Cell Transformation
Alkyl group

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.