Nov 26, 2003

Mechanism of tongue protraction in microhylid frogs

The Journal of Experimental Biology
Jay J MeyersKiisa C Nishikawa

Abstract

High-speed videography and muscle denervation experiments were used to elucidate the mechanism of tongue protraction in the microhylid frog Phrynomantis bifasciatus. Unlike most frogs, Phrynomantis has the ability to protract the tongue through a lateral arc of over 200 degrees in the frontal plane. Thus, the tongue can be aimed side to side, independently of head and jaw movements. Denervation experiments demonstrate that the m. genioglossus complex controls lateral tongue aiming with a hydrostatic mechanism. After unilateral denervation of the m. genioglossus complex, the tongue can only be protracted towards the denervated (inactive) side and the range through which the tongue can be aimed is reduced by 75%. Histological sections of the tongue reveal a compartment of perpendicularly arranged muscle fibers, the m. genioglossus dorsoventralis. This compartment, in conjunction with the surrounding connective tissue, generates hydrostatic pressure that powers tongue movements in Phrynomantis. A survey of aiming abilities in 17 additional species of microhylid frogs, representing a total of 12 genera and six subfamilies, indicates that hydrostatic tongues are found throughout this family. Among frogs, this mechanism of tongue pro...Continue Reading

  • References
  • Citations7

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations7

Citations

Mentioned in this Paper

Salientia
Hypoglossal Nerve Structure
Kinematics
Videocassette
Histological Techniques
Muscle Fibers
Anatomical Compartments
Benign Neoplasm of Tongue
Denervation
Phrynomantis bifasciatus

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Journal of Experimental Zoology. Part A, Comparative Experimental Biology
J Brock WolffCurtis W Anderson
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Kiisa C Nishikawa
© 2020 Meta ULC. All rights reserved