Sep 1, 1976

Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons

Proceedings of the National Academy of Sciences of the United States of America
R J KesslerD E Green


Classical uncouplers such as 2,4-dinitrophenol have been shown to be ionophores with the capability for transporting monovalent or divalent cations with equal efficiency. The conditions appropriate for the maximal expression of this ionophoric capability have been explored. Two critical factors are the polarity of the organic phase and the pH of the aqueous phase that is equilibrated with the organic phase. The demonstrated cationic ionophoric capability of uncouplers, taken in conjunction with the known ability of uncouplers to cycle protons across a membrane phase, provides the experimental basis for the thesis that uncoupling of electron flow from ATP synthesis via classical uncouplers involves the substitution of one coupled process by another. Uncoupling thus reduces to the replacement of one driven reaction (ATP synthesis) by the driven reaction (cyclical transport) mediated by the uncoupler.

  • References17
  • Citations34


  • References17
  • Citations34


Mentioned in this Paper

Cations, Divalent
Uncoupling Agents
Carbonyl Cyanide m-Chlorophenyl Hydrazone
Physicochemical Phenomena
Cations, Monovalent
Mitochondria, Muscle

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.