Mechanism of Zn Particle Oxidation by H2 O and CO2 in the Presence of ZnO

Chemistry of Materials : a Publication of the American Chemical Society
David WeibelAldo Steinfeld

Abstract

In this work we investigate the mechanism of Zn oxidation with CO2 and/or H2O to produce solar derived fuels (CO and/or H2) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO2 and H2O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al2O3 at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX...Continue Reading

Related Concepts

Aluminum Oxide
Plain X-ray
Metals
Thermogravimetry
Oxidation
Zinc Oxide
Fuel Oils
Site
RLN2
Zinc

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Sexual Dimorphism in Neurodegeneration

There exist sex differences in neurodevelopmental and neurodegenerative disorders. For instance, multiple sclerosis is more common in women, whereas Parkinson’s disease is more common in men. Here is the latest research on sexual dimorphism in neurodegeneration

HLA Genetic Variation

HLA genetic variation has been found to confer risk for a wide variety of diseases. Identifying these associations and understanding their molecular mechanisms is ongoing and holds promise for the development of therapeutics. Find the latest research on HLA genetic variation here.

Super-resolution Microscopy

Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Here are the latest discoveries pertaining to super-resolution microscopy.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.

Brain Lower Grade Glioma

Low grade gliomas in the brain form from oligodendrocytes and astrocytes and are the slowest-growing glioma in adults. Discover the latest research on these brain tumors here.

CD4/CD8 Signaling

Cluster of differentiation 4 and 8 (CD8 and CD8) are glycoproteins founds on the surface of immune cells. Here is the latest research on their role in cell signaling pathways.

Alignment-free Sequence Analysis Tools

Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.