Nov 7, 2019

Mechanisms Generating Cancer Genome Complexity From A Single Cell Division Error

BioRxiv : the Preprint Server for Biology
Neil UmbreitDavid Pellman

Abstract

The chromosome breakage-fusion-bridge (BFB) cycle is a mutational process that produces gene amplification and genome instability. Signatures of BFB cycles can be observed in cancer genomes with chromothripsis, another catastrophic mutational process. Here, we explain this association by identifying a mutational cascade downstream of chromosome bridge formation that generates increasing amounts of chromothripsis. We uncover a new role for actomyosin forces in bridge breakage and mutagenesis. Chromothripsis then accumulates starting with aberrant interphase replication of bridge DNA, followed by an unexpected burst of mitotic DNA replication, generating extensive DNA damage. Bridge formation also disrupts the centromeric epigenetic mark, leading to micronucleus formation that itself promotes chromothripsis. We show that this mutational cascade generates the continuing evolution and sub-clonal heterogeneity characteristic of many human cancers.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Gene Amplification
Genome
Cell Division
Virus Replication
Chromosome Breakage
Centromere
Chromothripsis
Clone
Chromosomes
Genomic Instability

About this Paper

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.