Aug 1, 1995

Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages

The Journal of Experimental Medicine
H Bouharoun-TayounPierre Druilhe

Abstract

The relevance of the antibody-dependent cellular inhibition (ADCI) of Plasmodium falciparum to clinical protection has been previously established by in vitro studies of material obtained during passive transfer of protection by immunoglobulin G in humans. We here report further in vitro investigations aimed at elucidating the mechanisms underlying this ADCI effect. Results obtained so far suggest that (a) merozoite uptake by monocytes (MN) as well as by polymorphonuclear cells has little influence on the course of parasitemia; (b) the ADCI effect is mediated by a soluble factor released by MN; (c) this or these factors are able to block the division of surrounding intraerythrocytic parasites at the one nucleus stage; (d) the critical triggering antigen(s) targeted by effective Abs would appear to be associated with the surface of merozoites, as opposed to that of infected red blood cells; (e) the MN receptor for Abs effective in ADCI is apparently Fc gamma RII, and not RI; (f) MN function is up- and down-regulated by interferon-gamma and interleukin 4, respectively; and (g) of several potential mediators released by MN, only tumor necrosis factor (TNF) proved of relevance. The involvement of TNF in defense may explain the rece...Continue Reading

Mentioned in this Paper

Merozoites
Tumor Necrosis Factor-alpha
Red blood cells, blood product
Uptake
Promoter
Antigens, Protozoan
Cell Nucleus
Malaria
Leu-11 Antigens
Soluble

About this Paper

Related Feeds

Antibody-Dependent Cell Cytotoxicity

Antibody-dependent cellular toxicity refers to the lysis of a target cell by a non-sensitized effector cell of the immune system as a result of antibodies binding to the target cell membrane and engaging the Fc receptors on the immune effector cells. Find the latest research on antibody-dependent cellular toxicity here.

Antimalarial Agents

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.

Antimalarial Agents (ASM)

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.