Apr 21, 2020

Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates

BioRxiv : the Preprint Server for Biology
N. AhmedEdward P O'Brien

Abstract

Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, when proline is present in the ribosome's P- or A-site translation slows down, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of mutational experiments, bioinformatics, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed, including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched seven-fold relative to the slow-translating pairs across Saccharomyces c...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
Bioelectricity
Research
Membrane
Action Potentials
DNA Stability Analysis
Calcium Channel
Cell Communication
Ion Channel
Angular

Related Feeds

Cancer Metabolism

In order for cancer cells to maintain rapid, uncontrolled cell proliferation, they must acquire a source of energy. Cancer cells acquire metabolic energy from their surrounding environment and utilize the host cell nutrients to do so. Here is the latest research on cancer metabolism.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.