DOI: 10.1101/519579Jan 13, 2019Paper

Memory-driven computing accelerates genomic data processing

BioRxiv : the Preprint Server for Biology
Matthias BeckerJoachim L Schultze


Next generation sequencing (NGS) is the driving force behind precision medicine and is revolutionizing most, if not all, areas of the life sciences. Particularly when targeting the major common diseases, an exponential growth of NGS data is foreseen for the next decades. This enormous increase of NGS data and the need to process the data quickly for real-world applications requires to rethink our current compute infrastructures. Here we provide evidence that memory-driven computing (MDC), a novel memory-centric hardware architecture, is an attractive alternative to current processor-centric compute infrastructures. To illustrate how MDC can change NGS data handling, we used RNA-seq assembly and pseudoalignment followed by quantification as two first examples. Adapting transcriptome assembly pipelines for MDC reduced compute time by 5.9-fold for the first step (SAMtools). Even more impressive, pseudoalignment by near-optimal probabilistic RNA-seq quantification (kallisto) was accelerated by more than two orders of magnitude with identical accuracy and indicated 66% reduced energy consumption. One billion RNA-seq reads were processed in just 92 seconds. Clearly, MDC simultaneously reduces data processing time and energy consumpti...Continue Reading

Related Concepts

Pharmaceutical Preparations
Memory T-Lymphocyte
Molecular Assembly/Self Assembly
Sequence Determinations, RNA
Light-driven Proton Transport
Environmental Infrastructure
Massively-Parallel Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.