Mer regulates microglial M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury

haijian wuJianmin Zhang


Background: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial physiology. However, its function in regulating the innate immune response and microglial M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial M1/M2 polarization and neuroinflammation following TBI. Methods: The controlled cortical impact (CCI) mouse model was established. Mer siRNA was intracerebroventricularly administered and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. Results: Mer is upregulated and regulates microglial M1/M2 polarization and neuroinflammation in the acute stage of TBI. Me...Continue Reading

Related Concepts

Related Feeds

Brain Injury & Trauma

brain injury after impact to the head is due to both immediate mechanical effects and delayed responses of neural tissues.