PMID: 3276663Feb 1, 1988

Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J

Journal of Bacteriology
E G Ruby, J B McCabe


Membrane-derived oligosaccharides (MDO), a class of osmotically active carbohydrates, are the major organic solutes present in the periplasm of Escherichia coli and many other gram-negative bacteria when cells are grown in a medium of low osmolarity. Analyses of growing cells of Bdellovibrio bacteriovorus, a gram-negative predator of other bacteria, have confirmed that they also synthesize a characteristic MDO-like class of oligosaccharides. The natural growth environment of bdellovibrios is the periplasm of other gram-negative bacteria. Because of this location, prey cell MDO constitute a potential source of organic nutrients for growing bdellovibrios. Using cells of E. coli whose MDO were 3H labeled, we examined the extent to which B. bacteriovorus 109J metabolizes these prey cell components. Interestingly, there was neither significant degradation nor incorporation of prey cell MDO by bdellovibrios during the course of their intracellular growth. In fact, bdellovibrios had little capability either to degrade extracellular MDO that was made available to them or to transport glucose, the major monomeric constituent of prey cell MDO. Instead, periplasmic MDO were irreversibly lost to the extracellular environment during the per...Continue Reading


Oct 22, 2008·Journal of Bacteriology·Susan R SteyertSilvia A Piñeiro

Related Concepts

Plasma Membrane
Molecular Sieve Chromatography
Alkalescens-Dispar Group

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.