Metabolism of totally ischemic excised dog heart. I. Construction of a computer model

The American Journal of Physiology
M J Achs, D Garfinkel


Construction and fit to the experimental data of a computer model of glycolysis, the Krebs cycle, and related metabolism in an ischemic dog heart preparation, involving 122 metabolites, 65 enzymes, and 406 chemical reactions, is described. The experimental preparation simulated is a dog heart excised from the body, placed in a beaker of Tyrode's solution, and sampled for 100 min; the model required only moderate modification from models representing perfused rat hearts, and little modification from a model of another ischemic dog heart preparation. Common underlying mechanisms for the ischemia are indicated, although this preparation appears to evolve more slowly with time, perhpas owing to heavy sedation and diffusion-limited transport. Lactate is, at first, exported and then accumulates intracellularly; pH falls, but not as much in the mitochondria as the cytoplasm; redox couples go reduced, but with counterintuitive time courses; calcium phosphate is calculated to precipitate, as often observed in cardiac ischemia.


Sep 15, 2006·American Journal of Physiology. Cell Physiology·Robert S Balaban

Related Concepts

Metabolic Process, Cellular
Dog Diseases
Enzymes, antithrombotic
Mitochondria, Heart
Myocardial Ischemia
Coronary Arteriosclerosis

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.