Apr 1, 2020

Learning excitatory-inhibitory neuronal assemblies in recurrent networks

BioRxiv : the Preprint Server for Biology
Alejandro Hernandez WencesHenning Sprekeler

Abstract

In sensory circuits with poor feature topography, stimulus-specific feedback inhibition necessitates carefully tuned synaptic circuitry. Recent experimental data from mouse primary visual cortex (V1) show that synapses between pyramidal neurons and parvalbumin-expressing (PV) inhibitory interneurons tend to be stronger for neurons that respond to similar stimulus features. The mechanism that underlies the formation of such excitatory-inhibitory (E/I) assemblies is unresolved. Here, we show that activity-dependent synaptic plasticity on input and output synapses of PV interneurons generates a circuit structure that is consistent with mouse V1. Using a computational model, we show that both forms of plasticity must act synergistically to form the observed E/I assemblies. Once established, these assemblies produce a stimulus-specific competition between pyramidal neurons. Our model suggests that activity-dependent plasticity can enable inhibitory circuits to actively shape cortical computations.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Computer Software
Base
Size
GAGE
Genome
Genome Assembly Sequence
Gallocatechol
Cell Growth
Apex1 protein, mouse
Massively-Parallel Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.