DOI: 10.1101/518647Jan 11, 2019Paper

MetFish: A Metabolomics Platform for Studying Microbial Communities in Chemically Extreme Environments

BioRxiv : the Preprint Server for Biology
Chengdong XuTom O Metz

Abstract

Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exo-metabolomics analysis in sample matrices containing up to 2 molar total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5-6 orders of magnitude) with excellent linearity, and low median inter-day reproducibility (e.g. 2.6%). MetFish was successfully applied in targeted and untargeted exo-metabolomics analyses of microbial consortia, quantifying amino acid dynam...Continue Reading

Related Concepts

Acids
Fracture
Molar Tooth
Extraction
Chemicals
In Situ
Nutrients
Hydroxyl group
Metabolite
Liquid Chromatography Mass Spectrometry

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.