Sep 14, 1999

Methanol modification of the electron paramagnetic resonance signals from the S(0) and S(2) states of the water-oxidizing complex of photosystem II

Biochimica Et Biophysica Acta
Z DeákStenbjörn Styring

Abstract

The Mn-derived electron paramagnetic resonance (EPR) multiline signal from the S(0) state of the water-oxidizing complex is observable only in the presence methanol. In the present study, we have characterized the effect of methanol on the EPR signals from the S(0) and S(2) states as well as on the EPR Signal II(slow) originating from the Tyrosine(D)(ox) radical. The amplitudes of the S(0) and S(2) multiline signals increase with the methanol concentration in a similar way, whereas the S(2) g=4.1 excited state signal amplitude shows a concomitant decrease. The methanol concentration at which half of the spectral change has occurred is approximately 0.2% and the effect is saturating around 5%. Methanol has an effect on the microwave power saturation of the S(2) multiline signal, as well. The microwave power at half saturation (P(1/2)) is 85 mW in the presence of methanol, whereas the signal relaxes much slower (P(1/2) approximately 27 mW) without. The relaxation of Signal II(slow) in the presence of methanol has also been investigated. The P(1/2) value of Signal II(slow) oscillates with the S cycle in a similar way as without methanol, but the P(1/2) values are consistently lower in the methanol-containing samples. From the resu...Continue Reading

Mentioned in this Paper

Electron Spin Resonance Spectroscopy
Tyrosine Measurement
Neoplasms, Second Primary
Methanol
Tyrosine
Photosystem II

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.