Dec 13, 2015

Methylome analysis reveals dysregulated developmental and viral pathways in breast cancer

BioRxiv : the Preprint Server for Biology
Mohammed OE AbdallahHiba S Mohamed

Abstract

Background Breast cancer (BC) ranks among the most common cancers in Sudan and worldwide with hefty toll on female health and human resources. Recent studies have uncovered a common BC signature characterized by low frequency of oncogenic mutations and high frequency of epigenetic silencing of major BC tumor suppressor genes. Therefore, we conducted a genome-wide methylome study to characterize aberrant DNA methylation in breast cancer. Results Differential methylation analysis between primary tumor samples and normal samples from healthy adjacent tissues yielded 20188 differentially methylated positions (DMPs), which is further divided into 13633 hypermethylated sites corresponding to 5339 genes and 6555 hypomethylated sites corresponding to 2811 genes. Moreover, bioinformatics analysis revealed epigenetic dysregulation of major developmental pathways including hippo signaling pathway. We also uncovered many clues to a possible role for EBV infection in BC Conclusion Our results clearly show the utility of epigenetic assays in interrogating breast cancer tumorigenesis, and pinpointing specific developmental and viral pathways dysregulation that might serve as potential biomarkers or targets for therapeutic interventions

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Genome-Wide Association Study
Antigens, Differentiation
Study
Biochemical Pathway
Tumor Suppressor Genes
Protein Methylation
Genes
Primary Neoplasm
Methylate

About this Paper

Related Feeds

Cancer Epigenetics & Methyl-CpG (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. Here is the latest research on cancer epigenetics and methyl-CpG binding proteins including ZBTB38.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Epigenetics and Senescence (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may be involved in regulating senescence in cancer cells. This feed captures the latest research on cancer epigenetics and senescence.

Cancer Epigenetics & Metabolism (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on the relationship between cell metabolism, epigenetics and tumor differentiation.

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.

Cell Signaling & Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. This feed covers the latest research on signaling and epigenetics in cell growth and cancer.

Cancer Epigenetics

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.