METTL3 serves an oncogenic role in human ovarian cancer cells partially via the AKT signaling pathway

Oncology Letters
Shumei LiangJuan Li

Abstract

Methyltransferase-like 3 (METTL3) has been identified as a methyltransferase responsible for N6-methyla-denosine (m6A) modification of mRNA. METTL3 functions in tumorigenesis and tumor development by promoting the translation of oncoproteins; however, the role of METTL3 in ovarian cancer has not been extensively studied. The present study performed immunohistochemistry to detect METTL3 expression levels in 52 samples of ovarian cancer tissue paired with corresponding paracancerous tissue. RNA interference was conducted to downregulate the expression levels of METTL3 in the SKOV3 and OVCAR3 ovarian cancer cell lines. Reverse transcription-quantitative PCR and western blot analysis demonstrated the effects of METTL3 knockdown on mRNA and protein levels, respectively. CCK-8, colony formation, apoptosis and Transwell assays were also performed. The results demonstrated that METTL3 exhibited significantly higher expression levels in ovarian cancer tissues compared with corresponding paracancerous tissue. High METTL3 expression levels were associated with large tumors, lymph node metastasis and high pathological grade. Cell proliferation analysis revealed that METTL3 knockdown reduced the proliferation and clonogenic ability of SKOV3...Continue Reading

Methods Mentioned

BETA
surgical resection
transfection
PCR

Software Mentioned

Image J
FlowJo
GraphPad
GraphPad Prism

Related Concepts

Related Feeds

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis