DOI: 10.1101/478875Nov 27, 2018Paper

Microfluidic On-demand Engineering of Exosomes towards Cancer Immunotherapy

BioRxiv : the Preprint Server for Biology
Zheng ZhaoMei He

Abstract

Extracellular Vesicles (EVs), particularly exosomes (30-150 nm), are an emerging delivery system in mediating cellular communications, which have been observed for priming immune responses by presenting parent cell signaling proteins or tumor antigens to immune cells. Therefore, preparation of antigenic exosomes that can play therapeutic roles, particularly in cancer immunotherapy, is emerging. However, standard benchtop methods (e.g., ultracentrifugation and filtration) lack the ability to purify antigenic exosomes specifically among other microvesicle subtypes, due to the non-selective and time-consuming (>10 h) isolation protocols. Exosome engineering approaches, such as the transfection of parent cells, also suffer from poor yield, low purity, and time-consuming operations. In this paper, we introduce a streamlined microfluidic cell culture platform for integration of harvesting, antigenic modification, and photo-release of surface engineered exosomes in one workflow, which enables the production of intact, MHC peptide surface engineered exosomes for cytolysis activation. The PDMS microfluidic cell culture chip is simply cast from a 3D-printed mold. The proof-of-concept study demonstrated the enhanced ability of harvested e...Continue Reading

Related Concepts

Antigens
Blood
Cell Culture Techniques
Genetic Engineering
Leukocytes
Medical Devices
Melanoma
Mice, Transgenic
Peptides
Tumor Antigens

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Vaccines

Cancer vaccines are vaccines that either treat existing cancer or prevent development of a cancer.