Apr 15, 2004

Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity

Experimental Neurology
Matthew J LaVoieTeresa G Hastings


Previous studies have demonstrated methamphetamine (METH)-induced toxicity to dopaminergic and serotonergic axons in rat striatum. Although several studies have identified the nature of reactive astrogliosis in this lesion model, the response of microglia has not been examined in detail. In this investigation, we characterized the temporal relationship of reactive microgliosis to neuropathological alterations of dopaminergic axons in striatum following exposure to methamphetamine. Adult male Sprague-Dawley rats were administered a neurotoxic regimen of methamphetamine and survived 12 h, or 1, 2, 4, and 6 days after treatment. Immunohistochemical methods were used to evaluate reactive changes in microglia throughout the brain of methamphetamine-treated rats, with a particular focus upon striatum. Pronounced morphological changes, indicative of reactive microgliosis, were evident in the brains of all methamphetamine-treated animals and were absent in saline-treated control animals. These included hyperplastic changes in cell morphology that substantially increased the size and staining intensity of reactive microglia. Quantitative analysis of reactive microglial changes in striatum demonstrated that these changes were most robust...Continue Reading

Mentioned in this Paper

Entire Brain
Establishment and Maintenance of Localization
Phosphate buffers
Abnormal Degeneration
Glial Fibrillary Acidic Protein
Serotonin Measurement
Muscle Innervation, Function

Related Feeds

Autoimmune Polyendocrinopathies

Autoimmune polyendocrinopathies, also called polyglandular autoimmune syndromes (PGASs), or polyendocrine autoimmune syndromes(PASs), are a heterogeneous group of rare diseases characterized by autoimmune activity against more than one endocrine organ, although non-endocrine organs can be affected. Discover the latest research on autoimmune polyendocrinopathies here.


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Barrel cortex

Here is the latest research on barrel cortex, a region of somatosensory and motor corticies in the brain, which are used by animals that rely on whiskers for world exploration.

Astrocytes in Repair & Regeneration

Astrocytes are glial cells found within the CNS and are able to regenerate new neurons. They become activated during CNS injury and disease. The activation leads to the transcription of new genes and the repair and regeneration of neurons. Discover the latest research on astrocytes in repair and regeneration here.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.

Autoimmune Polyendocrine Syndromes

This feed focuses on a rare genetic condition called Autoimmune Polyendocrine Syndromes, which are characterized by autoantibodies against multiple endocrine organs. This can lead to Type I Diabetes.