Sep 29, 2009

Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure

James M AntoniniDiane B Miller


Serious questions have been raised by occupational health investigators regarding a possible causal association between neurological effects in welders and the presence of manganese (Mn) in welding fume. Male Sprague-Dawley rats were exposed by inhalation to 40 mg/m(3) of gas metal arc-mild steel (MS) welding fume for 3 h/day for 10 days. Generated fume was collected in the animal chamber during exposure, and particle size, composition, and morphology were characterized. At 1 day after the last exposure, metal deposition in different organ systems and neurological responses in dopaminergic brain regions were assessed in exposed animals. The welding particles were composed primarily of a complex of iron (Fe) and Mn and were arranged as chain-like aggregates with a significant number of particles in the nanometer size range. Mn was observed to translocate from the lungs to the kidney and specific brain regions (olfactory bulb, cortex, and cerebellum) after MS fume inhalation. In terms of neurological responses, short-term MS fume inhalation induced significant elevations in divalent metal ion transporter 1 (Dmt1) expression in striatum and midbrain and significant increases in expression of proinflammatory chemokines (Ccl2, Cxcl2...Continue Reading

  • References44
  • Citations30


Mentioned in this Paper

Real-Time Polymerase Chain Reaction
Homovanillic Acid
Metal Ion Transporter
Cortex Bone Disorders
Abnormal Degeneration
Adrenal Cortex Diseases
Hydrogen Peroxide

Related Feeds

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.

Astrocytes in Parkinson Disease

Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic neurons. Some PD-genes may be associated with astrocyte dysfunction. Discover the latest research on astrocytes in Parkinson's disease here.

Amygdala and Midbrain Dopamine

The midbrain dopamine system is widely studied for its involvement in emotional and motivational behavior. Some of these neurons receive information from the amygdala and project throughout the cortex. When the circuit and transmission of dopamine is disrupted symptoms may present. Here is the latest research on the amygdala and midbrain dopamine.


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

Astrocytes in Repair & Regeneration

Astrocytes are glial cells found within the CNS and are able to regenerate new neurons. They become activated during CNS injury and disease. The activation leads to the transcription of new genes and the repair and regeneration of neurons. Discover the latest research on astrocytes in repair and regeneration here.

Basal ganglia in Parkinson's disease (MDS)

The basal ganglia is comprised of the neostriatum, the external and internal pallidal segments, the subthalamic nucleus, the substantia nigra pars reticulata, and the pars compacta of the substantia nigra. The basal ganglia circuitry is responsible for the correct execution of voluntary movements and is implicated in Parkinson's disease. Here is the latest research investigating the basal ganglia in Parkinson's disease.