Mar 24, 2020

'Mini' U6 Pol III promoter exhibits nucleosome redundancy and supports multiplexed coupling of CRISPR/Cas9 effects

Gene Therapy
Roland PreeceWaseem Qasim

Abstract

RNA polymerase III (Pol III) promoters express short non-coding RNAs and have been adopted for expression of microRNA, interference RNA, and CRISPR single guide RNA (sgRNA). Vectors incorporating H1 and U6 Pol III promoters are being applied for therapeutic genome editing, including multiplexed CRISPR/Cas9 effects. We report a nucleosome-depleted, minimal U6 promoter, which when embedded within lentiviral long terminal repeat (LTR) regions, supports high level transcriptional activity. Furthermore, duplex minimal H1 & U6 promoters transcribed dual sgRNAs for simultaneous disruption of T cell receptor (TCR) and human leukocyte antigen (HLA) molecules, supporting efficient generation of 'universal' CAR T cells.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Promoter
CRISPR-Cas Systems
Transcription, Genetic
Terminal (End Postition)
RNA
WA01 Cell Line
Long Terminal Repeat
RNA, Guide
RNA Polymerase III
T-Cell Receptor

Related Feeds

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.