Nov 7, 2018

Mitochondrial Uncoupling Protein 2 Knockout Promotes Mitophagy to Decrease Retinal Ganglion Cell Death in Glaucoma

BioRxiv : the Preprint Server for Biology
Daniel T Hass, Colin J Barnstable


Glaucoma is a neurodegenerative disorder characterized by mitochondrial dysfunction and an increase in oxidative damage, leading to retinal ganglion cell (RGC) death. The oxidative status of RGCs is regulated intrinsically and also extrinsically by retinal glia. The mitochondrial uncoupling protein 2 (UCP2) relieves oxidative and neuronal damage in a variety of neurodegenerative disease models. We hypothesized that deletion of Ucp2 in either RGCs or retinal glia would increase retinal damage and retinal ganglion cell death in a mouse model of glaucoma. Paradoxically, we found the reverse, and deletion of mitochondrial UCP2 decreased oxidative protein modification and reduced retinal ganglion cell death in male and female mice. This paradox was resolved after finding that Ucp2 deletion also increased levels of mitophagy in cell culture and retinal tissue. Our data suggest that Ucp2 deletion facilitates increased mitochondrial function by improving quality control. An increase in mitochondrial function explains the resistance of Ucp2-deleted retinas to glaucoma and may provide a therapeutic avenue for other chronic neurodegenerative conditions.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Retinal Cell Programmed Cell Death
Retinal Damage
Mitochondrial Inheritance
Post-Translational Protein Processing
Cessation of Life
Cell Culture Techniques
Nerve Degeneration
Gene Deletion Abnormality
Gene Deletion
Oxidative Stress

About this Paper

Related Feeds

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.


Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Astrocytes & Huntington’s Disease

Astrocytes are abundant within the central nervous system and their dysfunction has been thought to be an important contributor to some neurodegenerative diseases, in particular Huntington’s disease. Damage to these cells may make neurons more susceptible to degeneration. Here is the latest research on astrocytes and Huntington’s disease.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Daniel T Hass, Colin J Barnstable
Sheng li ke xue jin zhan [Progress in physiology]
Jian-Duo An, Ying Jiang
© 2020 Meta ULC. All rights reserved