Modeling and analysis of RNA-seq data: a review from a statistical perspective
Abstract
Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. The development of statistical and computational methods for analyzing RNA-seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statistical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development.
References
Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq
Citations
Related Concepts
Related Feeds
CZI Human Cell Atlas Seed Network
The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.