Aug 29, 2015

Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation

BioRxiv : the Preprint Server for Biology
Michael I LoveRafael A Irizarry


RNA-seq technology is widely used in biomedical and basic science research. These studies rely on complex computational methods that quantify expression levels for observed transcripts. We find that current computational methods can lead to hundreds of false positive results related to alternative isoform usage. This flaw in the current methodology stems from a lack of modeling sample-specific bias that leads to drops in coverage and is related to sequence features like fragment GC content and GC stretches. By incorporating features that explain this bias into transcript expression models, we greatly increase the specificity of transcript expression estimates, with more than a four-fold reduction in the number of false positives for reported changes in expression. We introduce alpine, a method for estimation of bias-corrected transcript abundance. The method is available as a Bioconductor package that includes data visualization tools useful for bias discovery.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Malignant Neoplasm of Stomach
Technology, Health Care
Spastic Syndrome
Alpine strawberry extract
probe gene fragment
Protein Isoforms
Drops - Drug Form

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.