Jul 13, 2016

Modelling tree growth taking into account carbon source and sink limitations

BioRxiv : the Preprint Server for Biology
Amaury HayatAndrew D Friend


Increasing CO2 concentrations are strongly controlled by the behaviour of undisturbed forests, which are believed to be a major current sink of atmospheric CO2. There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e. photosynthesis) driven. Here we present a model for an individual tree that takes into account also the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by the Runge-Kutta-Fehlberg (RKF45) numerical method. It was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Trees (plant)
Cell Growth
Carbon Dioxide
Research Study
Beech, Bach flower essence

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.