Oct 1, 1989

Molecular analysis of original antigenic sin. I. Clonal selection, somatic mutation, and isotype switching during a memory B cell response

The Journal of Experimental Medicine
S FishT Manser


To determine how the memory B cell population elicited to one epitope might be used in immune responses to other, structurally related epitopes, we explored the phenomenon of original antigenic sin. Strain A/J mice reproducibly respond to immunization with p-azophenylarsonate (Ars) by production of anti-Ars antibodies encoded predominantly by a single VH gene segment (VHIdCR). The structural analogue of Ars p-azophenylsulfonate (Sulf) fails alone to elicit such V regions, but can do so in A/J mice previously immunized with Ars, providing a means to specifically examine B cells capable of responding secondarily to a crossreactive antigen (i.e., memory cells). VHIdCR-expressing hybridomas were derived from the Ars-primed, Sulf-boosted original antigenic sin response of A/J mice at various times after Ars priming, and the properties of the antibodies they express and the structure of the genes encoding these antibodies were characterized. The data obtained support the following conclusions: (a) The Ars-induced memory B cell population capable of being crossreactively stimulated by Sulf is largely formed from a small fraction of all B cells participating in the anti-Ars primary response that express somatically mutated V regions; (...Continue Reading

  • References35
  • Citations31


Mentioned in this Paper

Antigenic Specificity
Immunoglobulin Isotypes
Immunoglobulin Heavy Chain Subgroup VH-III
Switch Complexes
Antibody Specificity

About this Paper

Related Feeds

Antibody Specificity

Antibodies produced by B cells are highly specific for antigen as a result of random gene recombination and somatic hypermutation and affinity maturation. As the main effector of the humoral immune system, antibodies can neutralize foreign cells. Find the latest research on antibody specificity here.