Jul 22, 2005

Molecular differentiation between chromosomally defined incipient species of Anopheles funestus

Insect Molecular Biology
A P MichelN J Besansky

Abstract

Anopheles funestus Giles is one of the most important vectors of malaria in sub-Saharan Africa. The population structure of this mosquito in Burkina Faso, West Africa based on chromosomal inversion data led to the description of two chromosomal forms, Kiribina and Folonzo. Because both forms co-occur in the same locales yet differ significantly, both in the frequency of inverted arrangements on chromosome arms 3R and 2R and in vectorial capacity, they were hypothesized to be emerging species with at least partial barriers to gene flow. This hypothesis would be strengthened by molecular evidence of differentiation between Kiribina and Folonzo at loci outside chromosomal inversions. We surveyed molecular variation in sympatric populations of the two forms using sequences from the mitochondrial ND5 gene and genotypes at sixteen microsatellite loci distributed across the genome. Both classes of marker revealed slight but significant differentiation between the two forms (mtDNA F(ST) = 0.023, P < 0.001; microsatellite F(ST) = 0.004, P < 0.001; R(st) = 0.009, P = 0.002). Locus-by-locus analysis of the microsatellite data showed that significant differentiation was not genome-wide, but could be attributed to five loci on chromosome 3R...Continue Reading

Mentioned in this Paper

Short Tandem Repeat
DNA, Mitochondrial
Insect Vectors
Malaria
Cell Differentiation Process
Malaria Vaccines
Chromosomal Inversion Process
Mitochondria
Chromosome Inversion
Chromosomes

Related Feeds

Antimalarial Agents

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.

Antimalarial Agents (ASM)

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.