May 25, 2006

Molecular-dynamics simulations of pyronine 6G and rhodamine 6G dimers in aqueous solution

Journal of Molecular Modeling
Parawan ChuichayNotker Rösch

Abstract

We have carried out molecular-dynamics (MD) simulations on dimers of the positively charged laser dyes pyronine 6G (P6G) and rhodamine 6G (R6G) in aqueous solution, generating trajectories of 2.5 ns for various computational protocols. We discuss how the choice of atomic partial charges and the length of the trajectories affect the predicted structures of the dimers and compare our results to those of earlier MD-simulations, which were restricted to only 0.7 ns. Our results confirm that monomers of P6G easily undergo relative rotations within the dimer, but we found new conformations of the R6G dimer at longer simulation times. In addition, we analyzed in detail the energy change during the formation of dimers. With suitable corrections, the electrostatic energy from an Ewald treatment agrees with the results from an approach relying on a residue-based cutoff. For P6G, we show that the strong solvent-mediated electrostatic attraction between the monomers is counteracted by an almost equally large solvent-induced entropy contribution to yield a small driving force to dimer formation, in very good agreement with the free-energy change from a thermodynamic-integration procedure. Thus, earlier rationalizations of the dimer formatio...Continue Reading

  • References8
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

In Silico
Rhodamine 6G tungstophosphate
Static Electricity
Pyronine
Rhodamine 6G
Motion
Dimer
Solutions
Dyes [MoA]
Dimerization

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Investigative Ophthalmology & Visual Science
Sebastian ThalerFrank Schuettauf
Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry
Sandra KienleThorsten Hugel
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
R E Johnson, S Ranganathan
© 2020 Meta ULC. All rights reserved