Aug 15, 1998

Molecular genetic methods: principles and feasibility in transfusion medicine

Vox Sanguinis
N D Avent

Abstract

The scale of the application of molecular biological techniques to modern medicine and research in the biological sciences is vast, and in many instances has captured widespread public appeal. The intention of this review is to summarise the impact of molecular techniques on Transfusion Medicine ranging from diagnostic testing (platelet, granulocyte and red cell genotyping; microbiological testing), stable gene integration into haematopoeitic stem cells (gene therapy), production of blood products in transgenic animals and cell lines, and the inhibition of gene expression using synthetic antisense oligodeoxynucleotides. All of these techniques involve the manipulation of genes, be it from the relatively simple examination of different alleles to the technically demanding ability to express mammalian genes in culture and other animals.

  • References25
  • Citations1

Citations

Mentioned in this Paper

Human Platelet Antigens
Restriction Fragment Length Polymorphism
Biological Products
Natural Products
Genes, Spliced
Proteins, Recombinant DNA
Gene Expression
Factor VIII Procoagulant Activity
Bioclate
Blood

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

Antisense Oligonucleotide - Therapies For ALS

This feed focuses on antisense oligonucleotide therapies such as Inotersen, Nusinursen, and Patisiran, in neurodegenerative diseases including amyotrophic lateral sclerosis.

Antisense Oligonucleotides: ND

This feed focuses on antisense oligonucleotide therapies such as Inotersen, Nusinursen, and Patisiran, in neurodegenerative diseases including amyotrophic lateral sclerosis.