Molecular modeling and simulation of Mycobacterium tuberculosis cell wall permeability

Xuan Hong, A J Hopfinger


The low permeability of the mycobacterial cell wall is thought to contribute to the intrinsic drug resistance of mycobacteria. In this study, the permeability of the Mycobacterium tuberculosis cell wall is studied by computer simulation. Thirteen known drugs with diverse chemical structures were modeled as solutes undergoing transport across a model for the M. tuberculosis cell wall. The properties of the solute-membrane complexes were investigated by means of molecular dynamics simulation, especially the diffusion coefficients of the solute molecules inside the cell wall. The molecular shape of the solute was found to be an important factor for permeation through the M. tuberculosis cell wall. Predominant lateral diffusion within, as opposed to transverse diffusion across, the membrane/cell wall system was observed for some solutes. The extent of lateral diffusion relative to transverse diffusion of a solute within a biological cell membrane may be an important finding with respect to absorption distribution, metabolism, elimination, and toxicity properties of drug candidates. Molecular similarity measures among the solutes were computed, and the results suggest that compounds having high molecular similarity will display simi...Continue Reading


Oct 30, 2012·Bioinformatics·Benjamin MergetChristoph A Sotriffer
Dec 19, 2006·Journal of Molecular Biology·Sudharsan SridharanJames C Sacchettini
Nov 22, 2007·Molecular Microbiology·Alessandro CascioferroRiccardo Manganelli
Jan 13, 2006·Journal of Molecular Graphics & Modelling·Rudolf Kiralj, Márcia M C Ferreira
Dec 24, 2013·Chemistry and Physics of Lipids·Wilma GroenewaldAnna K Croft
May 29, 2016·European Journal of Medicinal Chemistry·Anna AdamskaAgnieszka B Olejniczak
Jan 7, 2017·PLoS Computational Biology·Pia Abel Zur WieschTed Cohen

Related Concepts

Cell Membrane Permeability
Cell Wall
Mycobacterium tuberculosis H37Rv
Quantitative Structure Property Relationship

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.