PMID: 3954801Feb 1, 1986Paper

Molecular organization of the reductase complex in adrenal cortex mitochondria. Study using bifunctional reagents

Bioorganicheskaia khimiia
S A UsanovA A Akhrem


The water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, homobifunctional reagent 3,3'-dithiobis (succinimidyl propionate), and heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio) propionate have been used to cross-link adrenodoxin reductase and adrenodoxin, components of steroidogenic electron transfer system. Though maximal yield of the cross-linked complex was achieved with the water-soluble carbodiimide, this complex was inactive in the electron transfer from NADPH to cytochrome P-450. The functionally active complex was formed with N-succinimidyl 3-(2-pyridyldithio) propionate. The complex was purified to the apparent homogeneity and shown to be able to mediate the electron transfer. The data obtained indicate existence of different binding sites on adrenodoxin responsible for the adrenodoxin reductase and cytochrome P-450scc binding and do not contradict to the model of the steroidogenic electron transfer in an organized complex.

Related Concepts

Adrenal Cortex
Bos indicus
Molecular Sieve Chromatography
Cross-Linking Reagents
Cytochrome P-450 Oxygenase
Respiratory Chain
Ferredoxin-NADP Reductase

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Archaeal RNA Polymerase

Archaeal RNA polymerases are most similar to eukaryotic RNA polymerase II but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factor TFIIB) to initiate basal transcription. Here is the latest research on archaeal RNA polymerases.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.