Oct 21, 2006

Molecular testing for transfusion medicine

Current Opinion in Hematology
Connie M Westhoff

Abstract

Molecular testing methods were introduced to the blood bank and transfusion medicine community more than a decade ago after cloning of the genes made genetic testing for blood groups, that is genotyping, possible. This review summarizes the progress made in the last decade in applying genotyping to prenatal practice and clinical transfusion medicine. Assays that target allelic polymorphisms prevalent in all populations are reproducible and highly correlated with red blood cell phenotype. For some blood groups, assays that detect silencing mutations are also required for accurate typing, and for ABO and Rh, multiple regions of the genes must be sampled. Genotyping is a powerful adjunct to serologic testing and is superior for typing transfused patients, for D-zygosity determination, for noninvasive fetal typing, and for antigen-matching in sickle cell patients. Implementation of molecular testing for transfusion medicine has been a conservative process and limited primarily to reference laboratory environments. With the development of high-throughput platforms, genotyping is poised to move into the mainstream, revolutionizing the provision of antigen-negative donor units. This will enable electronic selection of units antigen ma...Continue Reading

  • References29
  • Citations24

References

  • References29
  • Citations24

Citations

Mentioned in this Paper

Blood Grouping and Crossmatching
Antigen D, Rh Blood Group
Genetic Screening Method
Alloimmunisation
Drepanocyte (Cell)
Prenatal Care
Prenatal brand of multivitamin
Antigens
Transfusion Medicine
Transfusion Reaction

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.