Nov 29, 2014

SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions

BioRxiv : the Preprint Server for Biology
Anil RajMatthew Stephens

Abstract

The effect of the rapid accumulation of non-synonymous mutations on the pathogenesis of SARS-CoV-2 is not yet known. To predict the impact of non-synonymous mutations and polyproline regions identified in ORF3a on the formation of B-cell epitopes and their role in evading the immune response, nucleotide and protein sequences of 537 available SARS-CoV-2 genomes were analyzed for the presence of non-synonymous mutations and polyproline regions. Mutations were correlated with changes in epitope formation. A total of 19 different non-synonymous amino acids substitutions were detected in ORF3a among 537 SARS-CoV-2 strains. G251V was the most common and identified in 9.9% (n=53) of the strains and was predicted to lead to the loss of a B-cell like epitope in ORF3a. Polyproline regions were detected in two strains (EPI\_ISL\_410486, France and EPI\_ISL\_407079, Finland) and affected epitopes formation. The accumulation of non-synonymous mutations and detected polyproline regions in ORF3a of SARS-CoV-2 could be driving the evasion of the host immune response thus favoring viral spread. Rapid mutations accumulating in ORF3a should be closely monitored throughout the COVID-19 pandemic.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Patterns
Deoxyribonuclease I
Genome
Chilopoda
Transcription, Genetic
Spatial Distribution
XCL1
Genome Assembly Sequence
Cytokinesis of the Fertilized Ovum
Scolopendra vilidicornis, homeopathic preparation

Related Feeds

Allergy and Asthma

Allergy and asthma are inflammatory disorders that are triggered by the activation of an allergen-specific regulatory t cell. These t cells become activated when allergens are recognized by allergen-presenting cells. Here is the latest research on allergy and asthma.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

The New England Journal of Medicine
Xiaoxia LuChinese Pediatric Novel Coronavirus Study Team
Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases
Tung Phan
© 2020 Meta ULC. All rights reserved